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Prediction of turbulent flow in curved pipes 
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A finite-difference procedure is employed to predict the development of turbu- 
lent flow in curved pipes. The turbulence model used involves the solution of two 
differential equations, one for the kinetic energy of the turbulence and the other 
for its dissipation rate. The predicted total-velocity contours for the developing 
flow in a 180’ bend are compared with the experimental data. Predictions of 
fully developed velocity profiles for long helically wound pipes are also presented 
and compared with experimental measurements. 

1. Introduction 
1.1. The problem considered 

Fluid flow in curved ducts is of importance in several engineering applications 
such as pipe bends, cooling and heating coils, blade passages of turbomachinery, 
and aircraft intakes. The flow in curved pipes differs from that in a straight 
pipe principally through exhibiting a ‘secondary’ flow in planes normal to the 
main flow (figure 1) .  Centrifugal forces act at  right angles to the main direction 
of the flow, so that the profile of axial velocity is distorted and the point at  which 
the velocity has its peak is shifted to the outside. The flow is three-dimensional, 
whereas that in a straight pipe is two-dimensional. 

In  the present study, the parabolic differential equations governing the 
curved-pipe flow are solved by the procedure of Patankar & Spalding (1972). 
In  a previous report (1974), the authors studied laminar flow in helical coils; 
they found that the procedure was quite satisfactory for predicting the flow 
and heat-transfer characteristics. The present report is an extension of the same 
numerical procedure for calculation of turbulent flow in curved pipes. 

1.2. Past work 

The literature on turbulent flow in curved pipes is quite extensive. Experimental 
investigations have been carried out by several authors and are summarized by 
Ito (1959). However, most of the investigators restricted their measurements to 
bulk quantities like the average friction factor; in a few cases the axial velocity 
profiles were also measured, namely by Hogg (1968) and Mori & Nakayama 
(1967). Also, in most of the investigations, only the ‘fully developed’ flow regime 
was studied; this occurs when the pipe is helical in form and long enough for the 
pattern of fluid flow and heat transfer to remain unchanged from one section to 
the next. 
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FIGURE 1. Secondary flow pattern. 

Rowe (1 966), however, presented detailed measurements of stagnation- 
pressure contours and yaw angles for developing flow in pipe bends for various 
configurations. He also extended the inviscid-flow theory of Hawthorne (1951) 
to predict the experimental data. There have as yet been no detailed measure- 
ments of the turbulence quantities or of the Reynolds-stress tensor in curved 
pipes ; nor have any theoretical predictions been made. 

I .3. Present work 

The success achieved in predicting the laminar-flow phenomena by the method 
of Patankar & Spalding (1972) encouraged the authors to extend the calculation 
procedure to the prediction of turbulent flow in curved pipes. The numerical 
capabilities remain adequate; however, a new difficulty appears, namely that of 
‘ modelling ’ the turbulence phenomena. 

In  the fbt instance, a simple turbulence model of the mixing-length type 
was used. The predictions using the simple Nikuradse length-scale distribution 
did not agree satisfactorily with the experimental data for fully developed flow. 
It was then decided to use a ‘two-equation’ turbulence model (Launder & 
Spalding 1972) ; this necessitates solution of two additional differential equations, 
one for the kinetic energy of the turbulence and another for a variable relating 
the length scale and kinetic energy of the turbulence. Such models have been 
previously used by Ng & Spalding (1972)) Rodi & Spalding (1970), Hanjalid 
(1970) and others. 

The present report describes the application of a two-equation turbulence 
model, in which the two additional variables are the kinetic energy k of the turbu- 
lence and its dissipation rate 6; an effective viscosity is calculated from k and E ,  

and with the aid of this the Reynolds stresses are related to the velocity gradients. 
The governing differential equations for the physical situation and the turbulence 
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model are described in $2. In  $3, comparisons are made with experimental 
results of Rowe (1966) for the developing flow in a 180" bend, and with the data 
of Hogg (1968) and Mori & Nakayama (1967) for the fully developed flow in a 
helically wound coil. Friction factors for fully developed flow are also compared 
with the empirical relation of Ito (1  959). 

2. Mathematical statement of the problem 
2.1. Governing equations 

The physical situation illustrat,ed in figure 2 may conveniently be described in the 
( r , 0 , $ )  co-ordinate system. The flow is treated as parabolic and the diffusion 
fluxes in the 4 direction together with terms of small order of magnitude are 
neglected. 

The governing differential equations are the r momentum equation 

the 0 momentum equation 

and the $ momentum equation 

Here U represents the velocity and the subscripts r ,  8 and $ refer to the corre- 
sponding co-ordinate directions. p is the density of the fluid (which is assumed 
uniform throughout the pipe) and p is the cross-stream pressure field. 

The 7's represent the combined laminar and turbulent stresses and will be 
expressed in terms of the velocity gradients and an effective viscosity. The 
expressions for these stresses are given in the appendix. 

is 'decoupled' 
from the cross-stream gradients of the pressurep, to make the solutions parabolic. 
The decoupling was first introduced by Gosman & Spalding (1971); it  has been 
used by Patankar et al. (1974), Curr, Sharma & Tatchell (1972) and Sharma & 
Spalding (1971) and can be regarded a,s a necessary and well-established practice. 

It may be noted that the streamwise gradient of the pressure 
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FIGURE 2 .  The geometry considered. 

2.3. The turbulence model 

It is postulated that the Reynolds stresses are related to the mean rate of strain 
via a turbulent viscosity, the value of which is determined by the local values of 
the density, turbulent kinetic energy and a length scale. For dimensional homo- 
geneity, the turbulent viscosity ,ut must be expressed as 

where CA is a constant a t  high Reynolds numbers. In  the present model, an 
equation for k is solved and the length scale 1 is calculated by solving an additional 
equation for a quantity s;  this represents the volumetric rate of dissipation of 
kinetic energy. 

At high Reynolds numbers, IZ may be assumed proportional to k%/l; equa- 
tion (3.4) may be, therefore, recast as 



Prediction of turbulent JOUJ in curved pipes 587 

where CF is another constant. The governing differential equat'ions for k and B ,  

after neglect of terms of small order of magnitude, are 

I n  the above equations, G represents the generation of turbulent kinetic energy 
and can be expressed in terms of the velocity gradients and the turbulent 
viscosity. The detailed expression for G is given in the appendix. The model 
contains five empirical constants, which are assigned the following values in 
accordance with the recommendations of Launder & Spalding (1972): 

cF = 0.09, c1 = 1.47, cz = 1.92, g k  = 1.0, cc = 1.3. 

The constants vk and re are turbulent Prandtl numbers for the diffusive trans- 
port of k and B respectively. 

2.3. The wall regions 

I n  the central region of the flow the gradients of flow properties are usually 
not very steep; a moderately fine finite-difference grid yields accurate solutions. 
However, close to solid walls the variations of flow properties are much steeper, 
thus necessitating an extremely fine grid for their accurate computation. Also, 
the present form of the turbulence model is valid only for fully turbulent flows; 
modifications are required to make it applicable to regions where the Reynolds 
number of the turbulence ( = pkfllp,, where I = k%/e) is low. 

There are two methods for accounting for the near-wall regions in the numerical 
methodsfor computing turbulent flows : the wall-function method and the method 
of modelling the low-Reynolds-number phenomena. In  the present study we 
adopt the wall-function approach chiefly because of its economy from the view- 
points of both computer storage and computer time. 

Wall functions have been proposed and used earlier by several authors includ- 
ing Wolfshtein (1969), Runchal (1969), Ng & Spalding (1972) and Koosinlin & 
Lockwood (1974). The practices adopted in the present study are described below. 

The first step in the method is to locate all the finite-difference grid nodes 
(except for those representing wall values) in the fully turbulent region. Thus the 
point P (of figure 3) is located sufficiently far from the wall for the local turbulent 
Reynolds number (pk*l/pt)p to be much greater than unity. It is then assumed that 
a logarithmic velocity profile prevails in the region between the wall and the node 
P, the expression for the velocity being 
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FIGURE 3. Representation of the near-wall region. 

where the subscript P indicates values at  grid node P,  y, is the distance of P 
from the wall and K and E are the log-law constants. Further, in the uniform- 
shear-stress layer, the generation and dissipation of k are nearly in balance; 

(2.9) 
it  can then be shown that 

By the use of this expression in conjunction with (2.8) the shear stress can be 
related to the kinetic energy of the turbulence through the relation 

r p  = r ,  = pCjkp.  

(3.10) 

The rate ep of dissipation of kinetic energy near the wall is fixed by the require- 
ment that the length scale varies linearly with the distance from the wall; the 

expression for ep  is ep = k&KYp. (2.11) 

The quantity k ,  represents the turbulent kinetic energy near the wall and is 
calculated from the regular balance equation, the diffusion of energy being set 
equal to zero. The dissipation term in the kinetic-energy equation is assigned an 
average value over the control volume for the node near the wall; thus 

(2.12) 

2.4. Xolution procedure 

The above equations, with the appropriate boundary conditions, are solved 
by a finite-difference procedure, which we describe here only in brief; a complete 
account is given in Patankar & Spalding (1  972). The main feature of the calcula- 
tion procedure is that the flow properties for one pipe cross-section are deduced 
from those at  an immediately upstream section, as follows. 

(1) The average pressure j3 and the pressure distribution p(r, 8 )  a t  the down- 
stream section are guessed. 

(2) The momentum equations for the r ,  19 and $I directions are then solved 
to get a first approximation to the downstream velocity distribution. 

(3) The mean pressure 1, and the axial velocities are thereupon corrected, 
by reference to the continuity and linearized longitudinal momentum equations, 
so as to ensure that the mass flow rate through the downstream section is the 
same as that through the upstream section. 
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FIGURES 4(u-d). For legend see next page. 

(4) Since the cross-stream velocities do not satisfy the continuity equation 
locally, a ‘Poisson’ equation is derived from this equation and the two linearized 
cross-stream momentum equations; this Poisson equation is then solved for 
corrections to the pressure ( p )  field. Thereafter the cross-stream velocities are 
corrected accordingly. 

( 5 )  The kinetic-energy and dissipation equations are solved so as to provide 
the new distributions appropriate to the downstream station. 

(6) A new downstream station is chosen and steps 1-5 are repeated. 
In  an iterative version of this scheme, which is preferable if large steps are 

to  be taken, the velocities are under-relaxed and operations 1-5 are repeated 
a t  the same section, the latest values of the pressure, kinetic-energy and dissipa- 
tion fields being used at each repetition. 

3. Results and discussions 
3.1. Computational details 

In  the computations whose results are reported here, the finite-difference grid 
possessed 14 intervals in the radial direction and 11 intervals in the 6’ direction; 
the grid covered only a semi-circular sector because the flow must be symmetrical 



590 8. V .  Patankar, 7. 8. Pratap and D. B. Xpalding 

FIGURE 4. Contours of velocity head non-dimensionalized with &pU,"; U, is the centre- 
line velocity a t  the inlet. -, predictions; ---- , experimental results, Rowe (1966). 
The Reynolds number of the flow is 2.36 x lo5 and R/a  = 24.0. Angular position along bend: 
( a )  0"; ( b )  30"; ( c )  45"; (d )  60"; ( e )  90"; (f) 120"; (9)  150"; (h)  180". 

about a diameter passing through the axis of curvature. Some computations 
were repeated with finer grids; but it was observed that the difference in the 
solutions was of the order of 2-3 %. Therefore a 14 x 11 grid was used in all 
further computations. The forward-step size was decided after similar tests and 
was fixed to be 1.5". Between two stations the solution was iterated; each time a 
more correct pressure field was used for the cross-stream velocities and a more 
correct axial pressure gradient. 

The developing-flow solutions were obtained by this marching procedure 
with small forward steps; however when only the fully developed flow was com- 
puted, very large forward steps were taken and the velocities were under-relaxed 
at each step. The computer time on a CDC6600 computer was of the order of 
0.45 s per forward step for the present grid, without iteration. 

3.2. Presentation of the results 

Figures 4(a)-(h) provide a comparison of the predicted velocity-head contours 
with the experimental results of Rowe (1966) for a 180" pipe bend. The Reynolds 
number of the flow was 2.36 x lo5 and the ratio of bend radius to pipe radius was 
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FIGURE 5. Secondary-velocity profiles along a vertical radius in a 180" bend; the flow 
Reynolds number is 2.36 x 105 and R/a = 24.0. Angular position along bend: (a) 15"; (b) 30"; 
( c )  45'; (d )  60'; (e) 120"; (f) 180". 

24. Comparisons are made for various angular positions along the bend, the flow 
at the inlet being a fully developed turbulent pipe flow. 

It is seen that, both for the predictions and the experiments, the velocity 
field is distorted with the velocity maximum shifted to the outside of the bend. 

The secondary velocities along the vertical diameter are plotted in figures 
5 (a)-(f) for various angular positions along the bend. It was observed by Rowe 
(1966) that the secondary velocities increase up to a distance of 30" and then 
decrease, owing to the production of streamwise vorticity of opposite sign. The 
predictions also display such a reduction in the secondary flow. 

The agreement of predicted total-velocity contours with measurements is 
fairly satisfactory; however, since it is not as good as that reported by Patankar 
et al. (1974) for laminar flow, it is probable that the turbulence model is the source 
of what discrepancies exist. 

3.3. Fully developed flow 

Figure 6 displays a comparison of predictions based on the two-equation turbu- 
lence model with experimental data (Hogg 1968; Mori & Nakayama 1967) 
for flow in a helically coiled pipe, at a section far enough from the entry for the 
pattern of flow not to change from one section to the next. I n  figure 6 (c), results 
are also presented for calculations using a form of the mixing-length hypothesis. 
It can be seen that the two-equation turbulence model yields superior predictions. 
The fully developed friction factors are compared with Ito's empirical formula 
in figure 7. Also presented in figure 7 are the computed friction factors for turbu- 
lent flow in straight circular pipes; the agreement with experimental data is 
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FIGURES 6(a, b ) .  For legend see next page. 

quite satisfactory. However, for the case of curved pipes, the magnitude of the 
friction factor is underpredicted; the maximum difference between the experi- 
mental and computed values is about 8 %. This discrepancy confirms the need, 
pointed out earlier, to refine the turbulence modelling. 
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FIGURE 6. Comparison of fully developed axial velocity profiles along planes A A  and BB. 
-,predictions using k ,  E model. (a )  Reynolds number = 8.9 x lo4, R/a = 25.9 ; , experi- 
mental, Hogg (1968). (b) Reynolds number = 6.8 x lo4, R/a  = 25.9; 0 ,  experimental, 
Hogg (1968). ( c )  Reynolds number = 2.5 x lo4, R/a = 40; 0 ,  experimental, Mori & Naka- 
yama (1967); -.-, predictions using mixing-length model. 
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FIGURE 7 .  Comparison of fully developed friction factors with experimental data. Experi- 
mental data: m, Schlichting (1962); 0 ,  Ito (1959), R/a  = 25.9; A, Ito (1959), R/a = 16.4. 
-, predictions using k, E model. 

4. Conclusions 
I n  the present study, a two-equation turbulence model, incorporated into a 

numerical solution procedure, has been employed to predict the flow charac- 
teristics in a curved pipe. Both developing and fully developed flow regimes were 
studied. The predictions display reasonable agreement with experimental data 
and the computation times are modest. 

However, the agreement of predictions with the measured data is less good 
than for laminar flow; therefore the turbulence modelling requires improvement. 

38 F L M  67 
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Possible modifications are (i) to discard the effective-viscosity approach and to 
solve differential equations for each individual shear stress, or (ii) to employ an 
intermediate approach, such as that proposed by Launder (197i), where the 
differential equations for turbulent shear stresses are approximated by algebraic 
equations. These tasks are being considered for the future. 

Appendix 
Expressions for the stresses 

The combined laminar and turbulent shear stresses are expressed in the form 

7ij = (Pl+lUt)Dij, (A 1) 

where (Dij},is the deformation tensor and ,uz is the molecular viscosity of the 
fluid (which is assumed constant throughout the pipe cross-section). The expres- 
sions for r i j  can be derived by expanding Djj in the present ( r ,  8,$) co-ordinate 
system. They are 

r, = 2,uaL@r, where ,u = (,uz+,ut), (A 2) 

Expression for  generation of kinetic energy 
The expression for G in the ( r ,  8, $) co-ordinate system is derived from its tensor 
invariant form. After neglect of small terms, it reduces t o  
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